
Autonomous Systems Lab
Prof. Roland Siegwart

Bachelor-Thesis

Supervised by: Author:
Dr. Paul Beardsley Kevin Egger
Christian Gehring

Simulation and Animation
of a Robotic Puppet

Spring Term 2013

Declaration of Originality

I hereby declare that the written work I have submitted entitled

Simulation and Animation of a Robotic Puppet

is original work which I alone have authored and which is written in my own words.1

Author(s)

Kevin Egger

Supervising lecturer

Paul Beardsley
Christian Gehring

With the signature I declare that I have been informed regarding normal academic
citation rules and that I have read and understood the information on ’Citation
etiquette’ (http://www.ethz.ch/students/exams/plagiarism_s_en.pdf). The
citation conventions usual to the discipline in question here have been respected.

The above written work may be tested electronically for plagiarism.

Place and date Signature

1Co-authored work: The signatures of all authors are required. Each signature attests to the
originality of the entire piece of written work in its final form.

http://www.ethz.ch/students/exams/plagiarism_s_en.pdf

iii

Contents

Abstract v

Symbols vii

1 Introduction 1
1.1 Motivation and Goals . 1
1.2 Focus Project PuppetCopter . 1
1.3 The Puppet . 2
1.4 Actuation of the Puppet . 2

2 Simulation 5
2.1 Requirements and Assumptions . 5
2.2 Tool Evaluation . 5

2.2.1 Gazebo . 6
2.2.2 MATLAB and/or C++ . 6
2.2.3 proNEu and C++ . 6
2.2.4 Motion Simulation with Siemens NX 7
2.2.5 SimMechanics . 7
2.2.6 Conclusion . 7

2.3 Mechanical Model of the Puppet . 7
2.3.1 Mechanical Properties . 8
2.3.2 Notation and Coordinate Frames 8

2.4 Implementation . 11

3 Motion Planning 15
3.1 Movement Generation . 15
3.2 Actuation Commands . 18

3.2.1 Legs . 19
3.2.2 Arms . 19

3.3 User Interface . 21

4 Evaluation 23
4.1 Walking . 24
4.2 Waving . 28

5 Conclusion 31
5.1 Summary . 31
5.2 Future Work . 31

Indices 33
Bibliography . 34
List of Figures . 35
List of Tables . 36

Appendix 37

A Mechanical Properties of the Puppet 39
A.1 Actuation System . 39
A.2 Main Body . 40
A.3 Upper Leg (Leg 1) . 41
A.4 Lower Leg (Leg 2) . 42
A.5 Upper Arm (Arm 1) . 42
A.6 Lower Arm (Arm 2) . 43
A.7 Head . 43

B Generated Files 45
B.1 Performance File . 45
B.2 Simulation Results . 45

Abstract

This bachelor thesis was written within the focus project PuppetCopter. The Pup-
petCopter is a marionette suspended from a hexacopter. The puppet is actuated
with a special system which is located below the hexacopter.

The goal of this thesis was to create a tool which allows the user to create perfor-
mances for the PuppetCopter. The main focus here lied in the animation of the
puppet. The desired movements were recorded in a motion capture environment.
From this data, the commands for the motors of the puppet actuation system were
calculated. These can then be started on the real system via an easy to use graph-
ical user interface. To verify the motions without having the need to have the real
system, a simulation of the puppet was created as well as part of this project. In
this simulation, any effects of the copter were neglected.

v

Symbols

Symbols

a scalar value

a vector

A matrix

A point

α, β, γ rotation angle around the x, y or z axis

i vector index

k discrete time index

q vector of generalized coordinates

Indices

act actuation bar

arm arm of the puppet

body body of the puppet

head head of the puppet

l left side

leg leg of the puppet

r right side

s string

Acronyms and Abbreviations

ASL Autonomous Systems Lab

CAD Computer Aided Design

COG Center of Gravity

DOF Degree of Freedom

ETH Eidgenössische Technische Hochschule

ROS Robot Operating System

ZHdK Zurich University of the Arts

vii

Chapter 1

Introduction

1.1 Motivation and Goals

The goal of this bachelor thesis is to create a tool to use for the focus project
PuppetCopter which allows the user to create performances for the system. These
performances primarily include movements patterns like walking or waving for the
puppet. Additionally, a method to define waypoints for the copter is required
to achieve a synchronized performance between the copter and the puppet. This
method needs to be integrated in the same tool as the generation of the puppet
motion in order to create a coordinated show.

The software developed in this thesis should therefore allow an easy definition of the
desired movements. These motions need to get transformed to the corresponding
motor commands which can then be sent to the actuation unit of the puppet. This
allows the motors to move the puppet to the correct position and performing the
desired movement.

To make testing of the calculated motor commands easier, a simulation of the
puppet will be created as well. This allows the user to visualize the movements and
provides a possibility to verify the computed motor commands without having the
need to test it with the real system.

1.2 Focus Project PuppetCopter

In the third year of the bachelor programme in mechanical engineering at ETH
Zurich, students get the choice to either enlarge their knowledge by visiting further
lectures or can work in a small team on a project for a year. These teams consist
of up to ten people and get to create a complete product from an initial concept to
a first working prototype.

The team of the focus project PuppetCopter consists of eight people: Six students
from ETH Zurich in their final year of the bachelor programme and two students
in Industrial Design from ZHdK.

The PuppetCopter, which can be seen in Figure 1.1, consists of two main subsys-
tems. On top, there is a hexacopter. Below is a marionette, the puppet, attached
with strings. To move the puppet, there is an actuation platform located in between
these two parts. The actuation system is able to move the strings of the marionette

1

Chapter 1. Introduction 2

Figure 1.1: Overview of the PuppetCopter. On top, there is the copter. Located on the bottom
is the puppet. In the middle, there is the actuation platform.

like a real puppeteer. Furthermore, a tilt compensation ensures that the actuation
platform is always parallel to the ground and decouples the puppet from the copter.
This simplifies the control of the marionette since the attitude of the copter does
not need to be considered.

The reader is referred to [1] to get further details about the focus project Puppet-
Copter.

1.3 The Puppet

In this Section, the puppet is described. The puppet is the object that is going to
be simulated in this thesis and can be seen in Figure 1.2.

The puppet is about 60 cm tall and weighs about 300 g. Its shape and limbs resemble
these of a human. It is completely 3D-printed.

The puppet has fifteen DOFs, all of them are rotational. There are three DOFs in
each shoulder and one in each elbow. Furthermore, one DOF is located in the hip
as well as there is one in the knee. Two DOFs are located in the neck to allow head
movements. The final fifteenth DOF is the rotation of the puppet’s main body.
This allows to move the puppet into a Superman-like flying position.

A more detailed look of the puppet with a focus on the mechanical model can be
found in Section 2.3.

1.4 Actuation of the Puppet

Like with a traditional marionette, there are no motors inside the puppet itself.
Everything is actuated from the actuation system located below the copter. The
actuation system can be seen in Figure 1.3. Each arm, each leg as well as the head

3 1.4. Actuation of the Puppet

Figure 1.2: The puppet. It has fifteen DOFs: Four in each arm, two in each leg, two in the head
and one to move up the body to go into a flying position.

is attached with a string to the actuation system, each limb attached to a separate
actuation module. There is another string which goes to the back of both legs. This
makes it possible to lift up the legs and the body of the puppet to go into a flying
position. All these strings can be reeled up with a motor, changing the length of
the string. There is one additional string on each shoulder. These two strings are
fixed and cannot be moved. They are used to attach the puppet to the copter and
carry the marionette’s weight.

Figure 1.3: The complete actuation system for the puppet which is located directly below the
copter.

Taking inspiration from real puppeteers who can freely move the string in 3D space,
one actuation module is extended with two servo motors. Additionally, the string
is first guided through a small, moveable bar. The first servo motor allows for a
rotation around the z axis, while the second one is used to move the bar up and
down. This then results in a 3D movement of the end point of the actuation bar.
One such actuation module can be seen in Figure 1.4.

Chapter 1. Introduction 4

Figure 1.4: A three dimensional actuation module. It consists of two rotational DOFs to move
the actuation bar around. The third DOF is realized by reeling up the string.

Since not all limbs in the puppet need to be moved with three DOFs, some of the
actuation modules are reduced to only one DOF which is changing the string length.
For the legs, only such a reduced module is needed. The arms and the head are
actuated with three DOFs.

More on the mechanical and electrical design of the actuation system can be found
in [5].

Chapter 2

Simulation

In this chapter, the simulation is discussed. First, the requirements and the as-
sumptions made are introduced. Next, various tools for creating the simulation
have been analysed. Afterwards, the mechanical model of the puppet is described
in detail. As a last point, the implementation of the simulation is explained.

2.1 Requirements and Assumptions

The first question which has to be asked is whether the simulation must be dynamic.
In the case of this project, a dynamic simulation is preferred. The reason for this is
that some limbs of the puppet, like the lower part of the leg, are not actuated and
would not move at all in a non-dynamic simulation.

Furthermore, the strings have to be modelled in the simulation somehow. It also
needs to be capable to read in an input in order to be able to simulate the behaviour
under the inputs the actuation system gets.

Additionally, several assumptions were made to simplify the problem:

• The movements of the copter are neglected. This means that the actuation
platform is fixed in space for the simulation.

• The puppet is rigidly connected to the copter, i.e. the puppet’s shoulder
always stays at the same position.

• All strings are modelled as forces acting on the limbs. This means that the
strings can push the limb, unlike their real-world counterparts.

2.2 Tool Evaluation

For creating a simulation, various tools have been considered. The tool needs to
be capable of building a model of the puppet with the present DOFs as well as
some easy ways to correctly replicate the influences of reeling up a string. The
simulation tool must also provide for a method to visualize the calculated results.
The considered tools are listed with their respective advantages and disadvantages
below.

5

Chapter 2. Simulation 6

2.2.1 Gazebo

Gazebo1 is a program for simulating robots. The model is specified in an XML file.
The software also features a visualization of the model’s movements. To interact
with the simulation, it is possible to write C++ plugins. Furthermore, Gazebo can
be easily connected to a ROS2 environment which is already used for the commu-
nication on the copter. This would make it easy to exchange the simulation with
the real system.

Figure 2.1: Gazebo Simulation Environment.

2.2.2 MATLAB and/or C++

This option would not rely on any already implemented software. This gives com-
plete control over the simulation which makes it adjustable to the project’s needs.
However, this also means that every component would have to be reimplemented:
The equations of motion have to be defined. Then these equations need to get
solved numerically. Finally, a visualization of the simulated movements has to be
created.

2.2.3 proNEu and C++

Some of the parts of creating the simulation could be done by already existing
software. The MATLAB tool proNEu3, which was developed at the ASL, takes
the kinematic tree of the model as an input and then generates the equations of
motions.

These equations would then need to be implemented in a C++ program. Further-
more, a visualization of the results also needs to be created.

This method also gives a lot of flexibility since the simulation can be adjusted as
needed. The hardest part, the generation of the equations of motions, would be
done by an already existing, simple to use MATLAB program.

1Website: http://gazebosim.org/ (May 2013)
2Website: http://www.ros.org/wiki/ (June 2013)
3Website: http://www.leggedrobotics.ethz.ch/doku.php?id=research:software (June 2013)

http://gazebosim.org/
http://www.ros.org/wiki/
http://www.leggedrobotics.ethz.ch/doku.php?id=research:software

7 2.3. Mechanical Model of the Puppet

2.2.4 Motion Simulation with Siemens NX

Siemens NX is the CAD software which was used in the project. It also includes a
motion simulation package. It allows to directly import a CAD model and simulate
it with a visualization using the real model. However, as it is a closed system, an
integration with an outside system is difficult to achieve.

2.2.5 SimMechanics

SimMechanics4 is a MATLAB/Simulink tool. It allows to link multiple rigid bodies
in the Simulink environment and can afterwards simulate it. However, it is difficult
to model the strings and link the Simulink part to input commands from the outside.

2.2.6 Conclusion

Table 2.1 provides an overview of the considered tools. In the end, two of these
solutions were taken under further consideration. The choice was between either
Gazebo or proNEu. The other options were not considered any further because they
either would need too much effort to implement or they do not provide a simple
way to interact with the simulation from the outside.

G
a
z
e
b
o

M
A
T
L
A
B

/
C
+
+

p
r
o
N
E
u

/
C
+
+

S
ie
m

e
n
s
N
X

S
im

M
e
c
h
a
n
ic
s

Simulation Available yes no partially yes yes
Visualization yes no no yes yes
Integration in Custom Software no yes yes no partially
Extensibility yes yes yes no partially

Table 2.1: Overview of the considered tools to perform the simulation.

Gazebo would have been a good solution since everything is already programmed
and there exists an easy way of interacting with the simulation. However, the
simulation often did not respond to a force set on the limb. Such problems are hard
to solve since it is uncertain if the problem lies in the software itself or in the given
model.

For this reasons, it was decided to create the simulation with proNEu. This requires
an additional program to solve the equations provided by proNEu and visualize
these results. Fortunately, these steps are not difficult to implement. Furthermore,
this allows to customize the simulation to exactly fit the needs of the project.

2.3 Mechanical Model of the Puppet

The following Section discusses the mechanical model of the puppet. First, it is
explained how the mechanical properties of the puppet were found. Second, the

4Website: http://www.mathworks.ch/products/simmechanics/ (March 2013)

http://www.mathworks.ch/products/simmechanics/

Chapter 2. Simulation 8

model of the puppet used to implement the simulation is presented.

2.3.1 Mechanical Properties

In order to be able to create the simulation as close to reality as possible, the
mechanical properties of the puppet like mass, inertias, COGs as well as lengths
and dimensions, have to be found.

Measuring the lengths of the different limbs can easily be done using the real puppet.
The inertias, however, cannot be measured this simply. They have to be found using
a CAD software. For this, the CAD models of the actual puppet were used.

In order to use the CAD software to calculate the mass and inertia properties as
well as the location of the COGs, the density of the material has to be found first.
A part of the puppet, one arm5, was measured to have a weight of 13.3 g. With
the CAD software, the volume of the same part was found as 13 437.8 mm3. The
density of the puppet’s material can then be calculated by

ρpuppet =
mpuppet

Vpuppet
= 982

kg

m3
. (2.1)

With this result, the mass and inertia values and the COG locations can be calcu-
lated. These results can be found in Appendix A.

2.3.2 Notation and Coordinate Frames

The following Section provide sketches with the mechanical model of the puppet.
The following colour scheme is used

Green Coordinate Frame
Orange Coordinate Frame
Red Coordinate Frame
Dark Blue Degree of Freedom
Purple Point
Light Blue String

Actuation Platform

The mechanical model of the actuation platform is given in Figure 2.2. Figure 2.2(c)
shows the coordinate frames of the actuation unit. In Figure 2.2(d), the DOFs of
the actuation platform as well as all points are indicated.

As mentioned in Section 2.1, the actuation platform is assumed to be fixed in space.
Therefore, the coordinate origin O as well as the inertial frame I is located there.
There are three one dimensional actuation modules used to actuate the legs. They
can only change the length of the strings. Furthermore, there are three actuation
modules with three DOFs. These are used to control the head and the arms. They
are able to change the string length and have to further rotational DOFs as indicated
in Figure 2.2.

5The measured part consists of the black parts of the arm. It included both rigid body which
form the arm, but without the hand piece.

9 2.3. Mechanical Model of the Puppet

eIy
eIz

eIx eact,arm,lz

eact,arm,lx
eact,arm,lyeact,arm,rx

eact,arm,rz
eact,arm,ry

eact,heady

eact,headz

eact,headx

Strings

(a) Coordinates Frame from the front

αact,arm,r αact,arm,l

Carm,r,3

Carm,r,2

Carm,r,1

Carm,l,3

Carm,l,2

Carm,l,1
Cleg,lCleg,r

Cleg,back Chead,3
Chead,2

Chead,1

O

Larm,r Lleg,r
Lleg,back

Lhead Lleg,l Larm,l

Strings

(b) Point and DOFs from the front

eact,arm,ly

eact,arm,lz

eact,arm,lx

eact,arm,ly

eact,arm,lz

eact,arm,lx

eIz

eIx

eIy

(c) Coordinates Frame from the top (only with actuation units of arm)

γact,arm,l
γact,arm,r

Carm,r,3

Carm,r,2 Carm,l,2

Carm,l,3

O

(d) Point and DOFs from the top

Figure 2.2: Mechanical model of the actuation platform.

Body and Head

Figure 2.3 shows the mechanical model of the body and the head. On both sides of
the shoulder, the immovable string going to the actuation platform is attached. A
movable string is attached on the head.

This part of the puppet consists of three DOFs due to its joints. The first one is
achieved by rotating the whole body around the y axis. There are two additional
DOFs between the body and the head as indicated in the drawing. The direction
of the angle is defined as drawn in Figure 2.3, the zero position is at the shown
position.

Chapter 2. Simulation 10

eheadx

ebodyy

βbody

αhead

βhead eheady

eheadz

ebodyz

ebodyx

B0

Ar,1 Al,1

Lr,1 Ll,1

H0

Hs

String

Head

Body

Right Arm Left Arm

Left LegRight Leg

Figure 2.3: Mechanical model of the puppet’s body and the head. The body is drawn shorter than
in reality in order to reduce the size of the Figure.

Al,1

αarm,l,1

Al,s

Al,2

Al,3

ebodyz

earm,1x

earm,l,2y

earm,l,2z

earm,l,2x

earm,1y

earm,1z

ebodyy

ebodyx
Al,1

γarm,l,1

Al,s

Al,2

Al,3

ebodyz

earm,1x

earm,l,2y

earm,l,2z

earm,l,2x

earm,1y

earm,1zebodyy

ebodyx

γarm,l,2

String

Figure 2.4: Mechanical model of the left arm.

Arms

In Figure 2.4, the mechanical model of the left arm can be seen. The same model
applies to the right arm in a similar way. The coordinate frames on the right arm

11 2.4. Implementation

are flipped however. This means that the direction of the y axis is reversed.

There is one string attached on the arm in the point Al,s. It is located near the end
of the arm. The arm consists of two rigid bodies. The upper body is connected to
the main body of the puppet with a ball joint. This joint has three DOFs. Two of
them are indicated in Figure 2.4. The third DOF is the rotation around the axis
of the arm (y axis) with the angle βarm,l,1. The connection between the lower and
the upper part of the arm consists of only one DOF.

Legs

eleg,l,2y

ebodyz

eleg,l,2x

eleg,l,2z

ebodyy

ebodyx

eleg,1x

eleg,1y

eleg,1z

ebodyz

ebodyx

ebodyy

eleg,1y

eleg,1x

eleg,1z

eleg,l,2yeleg,l,2x

eleg,l,2z

βleg,l,1

βleg,l,2

Ll,1

Ll,s,1

Ll,2

Ll,3
Ll,3

Ll,s,2

Ll,s,1
Ll,2

Ll,1

Figure 2.5: Mechanical model of the left leg.

The mechanical model of the left leg can be seen in Figure 2.5. The same model
applies analogously for the right leg.

There are two strings attached per leg. Both of them are located directly above the
knee joint. The first string is in front of the puppet. It is used for all leg movements
like walking. The second string is attached on the back of the limb. It is used to
lift the puppet up to go in a flying position, affecting the DOF βbody of the body
(see 2.3). The back strings of both legs are controlled simultaneously.

A leg consists of two DOFs. There is one rotational DOF in the hip and another
one in the knee.

2.4 Implementation

As a first step, a MATLAB program was written to generate the equations of motion
with the help of proNEu. The kinematic tree of the puppet was built according to
the model introduced in the previous Section. The output of proNEu are the matrix

Chapter 2. Simulation 12

M as well as the vectors b and g of the equations of motion6

M(q) · q̈ + b(q, q̇) + g(q) = S>τ (2.2)

where (see also [4])

q vector of generalized coordinates
M mass matrix ∈ R15×15

b coriolis and centrifugal components ∈ R15×1

g gravitational components ∈ R15×1

S selection matrix of the actuated joint ∈ R36×15

τ generalized forces ∈ R36×1

The vector of the generalized coordinates is defined as

q =
(
βbody βleg,l,1 βleg,l,2 βleg,r,1 βleg,r,2 . . . (2.3)

αarm,l,1 βarm,l,1 γarm,l,1 γarm,l,2 . . .

αarm,r,1 βarm,r,1 γarm,r,1 γarm,r,2 . . .

αhead βhead
)>
.

The vector of the generalized forces is given by

τ =
(
τβbody

τβleg,l,1
τβleg,l,2

τβleg,r,1
τbetaleg,r,2 . . . (2.4)

ταarm,l,1
τβarm,l,1

τγarm,l,1
τγarm,l,2

. . .

ταarm,r,1 τβarm,r,1 τγarm,r,1 τγarm,r,2 . . .

ταhead
τβhead

. . .

Fleg,l,1,x Fleg,l,1,y Fleg,l,1,z Fleg,l,2,x Fleg,l,2,y Fleg,l,2,z . . .

Fleg,r,1,x Fleg,r,1,y Fleg,r,1,z Fleg,r,2,x Fleg,r,2,y Fleg,r,2,z . . .

Farm,l,x Farm,l,y Farm,l,z Farm,r,x Farm,r,y Farm,r,z . . .

Fhead,x Fhead,y Fhead,z
)>

where the τi are the joint frictions and the Fj the forces caused by the strings.

The selection matrix S is chosen as

S =



I15
Jleg,l,1(q)
Jleg,l,2(q)
Jleg,r,1(q)
Jleg,r,2(q)
Jarm,l,1(q)
Jarm,r,1(q)
Jhead,1(q)


(2.5)

where I15 ∈ R15×15 is the identity matrix and

Ji =
∂r(q)

∂q
, Ji ∈ R3×15 (2.6)

are the Jacobians for the points where the strings are attached on the puppet.

6The tool proNEu also is also capable of generating the matrix S. However, it was decided to
create this matrix using Jacobians as discussed later and not use the result of proNEu.

13 2.4. Implementation

Figure 2.6: The implemented simulation visualized with the help of OpenGL.

The equation (2.2) is then implemented in a C++ program and solved. To work
with matrices and vectors in the C++ code, the matrix library Eigen7 is used. The
equations of motion can then be solved after q̈ with the aid of the before-mentioned
library.

This solution is then integrated by using two Euler Forward integrators:

q̈k+1 = M−1(qk) ·
(
S>(qk)τ(qk)− b(qk, q̇i)− g(qi)

)
(2.7)

q̇k+1 = q̇k +∆t · q̈k+1 (2.8)

qk+1 = qk +∆t · q̇k+1 (2.9)

where ∆t is the time step which needs to be small in order for the result to be
accurate. For the simulation, this time step was chosen as ∆t = 10−5 s.

The head is currently not fully implemented. Within the project PuppetCopter, it
was decided that the main focus is a correct implementation of the arms and legs as
well as the flying movement. While head movements are included in the equations
of motion, there is no string or other external force acting on the head. This goes
together with the actuation platform where there is also no actuation for the head
yet.

To visualize the simulation, OpenGL8 was used as can be seen in Figure 2.6. This
visualization was then incorporated into a graphical user interface. The reader is
referred to Section 3.3 for more details about the user interface.

While the simulation is performing, it gets the current input of the actuation system.
As mentioned above, the strings are simplified in the simulation. The strings are

7Website: http://eigen.tuxfamily.org/index.php?title=Main Page (May 2013)
8OpenGL is an 2D and 3D graphics library. Website: http://www.opengl.org/ (June 2013)

http://eigen.tuxfamily.org/index.php?title=Main_Page
http://www.opengl.org/

Chapter 2. Simulation 14

modelled as forces acting on the limbs, meaning that they can not only pull, but
also push the body. To control these string forces in the simulation, a PID controller
was programmed which gets the calculated string length as the reference position.

For the rotational DOFs of the actuation system, the angles get just set. To intro-
duce the effects of these movements on the puppet, the following force was added:

Fact,angle(k) = f ·
(
rCact,3(k)− rCact,3(k − 1)

)
(2.10)

with f being a constant factor and rCact,3 being the position of the end of the
actuation bar.

To prevent the puppet’s belly from swinging too much, movements of it are disabled.
They can be turned on by choice since they are required in order to move the belly
up to simulate the flying movement.

Furthermore, there is damping in the joint. This damping was realized by

τi,damping = −δjoint · q̇i (2.11)

where δjoint is the damping constant.

To prevent joints from exceeding their physical limits, another force was introduced.
This force consists of a force and a damper:

τi,limit =

{
− (climit · (qi − ϕi,upper) + δlimit · q̇i) if qi > ϕi,upper
− (climit · (qi − ϕi,lower) + δlimit · q̇i) if qi < ϕi,lower

(2.12)

where ϕi,lower and ϕi,upper are the joint limits (see Table 2.2), climit is the spring
constant and δlimit is the damping constant.

i Joint Name Lower Limit [rad] Upper Limit [rad]

0 βbody -1.6 1.6

1 βleg,l,1 -0.25 1.5708

2 βleg,l,2 -1.5708 0.1

3 βleg,r,1 -0.25 1.5708

4 βleg,r,2 -1.5708 0.1

5 αarm,l,1 -1.5 1.0472

6 βarm,l,1 -3.14 3.14

7 γarm,l,1 -0.1 1.856

8 γarm,l,2 -1.5708 0

9 αarm,r,1 -1.5 1.0472

10 βarm,r,1 -3.14 3.14

11 γarm,r,1 -0.1 1.856

12 γarm,r,2 0 1.5708

13 αhead not implemented yet

14 βhead not implemented yet

Table 2.2: The joint limits in the simulation. These were measured on the real system.

After the simulation has finished, the results get stored in an external text file,
allowing for a later analysis of the simulation in MATLAB or a different tool. The
content of this file is listed in Appendix B.2.

Chapter 3

Motion Planning

In this Chapter, it is shown how the movements are created. Figure 3.1 gives an
overview of the process. First, the desired motions get defined (Section 3.1). From
this input, the needed motor commands for the actuation are calculated (Section
3.2). This data can then be either verified in a simulation (see Chapter 2) or sent
to the real system (see [5] for the puppet and [3] for the copter). The calculation
of the actuation commands and the simulation are integrated in the same software.
These two elements can be accessed from the graphical user interface (Section 3.3).

Simulation
Compute
Actuation
Commands

Puppet
Actuation

Copter
Trajectory
Controller

Motion
Generation

Figure 3.1: Overview of the process of creating a motion. First, the desired movements get defined.
Then, the corresponding actuation commands are calculated. Finally, these can be either verified
in a simulation or sent to the real system.

3.1 Movement Generation

In order to run the PuppetCopter, the desired motions have to be defined. There
exist several possible approaches for doing this. One option would be to construct
a second puppet with the same DOFs as the original one, but with encoders built
in its joints. The puppet could be then placed in a desired position while the joint
angles are read out.

Another option would be to use human motion data. This data would have to be
transformed to fit the puppet. Furthermore, it would be necessary to determine if
this data consists movement that are feasible for the puppet.

Another possibility would be to use a motion capture system. Here, the OptiTrack
system could be used. The motion capture works the following way: There are

15

Chapter 3. Motion Planning 16

several cameras attached in the room. These cameras track the position of reflective
marker balls which have to be put onto the object. The big advantage of this setup
is that it is possible to record the movements with the actual puppet. This ensures
a movement that is physically possible with the real marionette. Furthermore, the
movements could be played by an actual puppeteer. Another advantage of this
option is that a collision detection is not needed since the movements are recorded
with the actual system. Collisions can already be avoided during the recording.

The disadvantages of this approach are, since the system is camera-based, that
special care needs to be taken that all the markers on the puppet are visible for
all the time. It is easily possible that the system loses one of the markers. This is
usually solved by attaching multiple markers on the same body. However, this is
difficult to implement with such a small object.

It was decided to work with the motion capture system since with this setup, the
procedure of recording the motions is similar to playing an actual marionette. To
do this, each actuated part of the marionette – each leg, each arm and the head
– gets a marker ball attached at the same place where the string is attached. On
the main body of the puppet however, three markers are used. This allows an
additional tracking of the orientation of the marionette. The puppet equipped with
the markers can be seen in Figure 3.2.

Figure 3.2: The puppet equipped with reflective markers for the use with the motion capture
system.

To play the puppet, it will not be attached to the actuation platform used to
autonomously control the marionette, but instead to a device that is used by pup-
peteers, called control bar. A control bar can be seen in Figure 3.3. Another set of

17 3.1. Movement Generation

Figure 3.3: The marionette control bar used for the motion capture.

three markers is positioned on the control bar to simultaneously record the desired
trajectory of the copter.

After recording the movements, the tracked marker positions can be exported as a
.c3d file. With a free tool from the Carnegie Mellon University1, this data can be
loaded into MATLAB. There, the captured data can be saved into a file that can
be read in the C++ program.

The MATLAB tool loads the data into a three dimensional array – frame (time),
marker, and coordinate (x,y,z). This data can be converted to a two dimensional
structure which can be easily written to a file.

Since the coordinate frame of the motion capture system does not correspond with
the puppet’s coordinate frame, the position data has to be modified. While the z
axis from both frames show in the same direction, only one rotation is necessary to
transform into the other frame as can be seen in Figure 3.4.

eIz

eMz = ePz

eIy

eIx

eMy

eMx

ePx

ePy

Ψ

MO

WO,B0,O

Figure 3.4: Different coordinate frames from the motion capture. M system (green): Motion
capture coordinate frame; P system (orange): Puppet coordinate frame rotated to have axes
correctly aligned; I system (red): Frame on actuation platform. Points: MO: Motion capture
origin (on ground); O: origin of I frame (on actuation platform); B0: origin of puppet body
coordinate frame (on puppet body); WO: point below O on ground.

The rotation angle Ψ between the two coordinate frames is defined as

Ψ = arctan

(
∆y

∆x

)
+
π

2
(3.1)

1Website: http://mocap.cs.cmu.edu/ (May 2013)

http://mocap.cs.cmu.edu/

Chapter 3. Motion Planning 18

where ∆x = xr − xl and ∆y = yr − yl with (xr, yr) the position of the marker on
the right shoulder and (xl, yl) the position of the marker on the left shoulder.

The other tracked points can then be easily rotated around the z axis with the angle
Ψ by

P r = APM (Ψ) ·Mr (3.2)

where APM (Ψ) is the rotation matrix defined as

APM =

 cosΨ sinΨ 0
− sinΨ cosΨ 0

0 0 1

 . (3.3)

Any of the tracked points on the puppet (indicated with Ps) is then given by

rWOPs
= rMOPs︸ ︷︷ ︸

From motion capture

− rMOB0︸ ︷︷ ︸
From motion capture

+rWOB0
(3.4)

where rWOB0
=
(

0 0 zbody
)>

. In all of the following calculations, the P coor-
dinate frame is used, with the coordinate origin moved to WO.

The yaw angle of the reference copter, the marionette control bar, can be calculated
in a similar manner:

ΨCopter = arctan

(
xr − xl
yr − yl

)
− Ψ0 (3.5)

where (xr, yr) is the position of the marker on the right side of the control bar and
(xl, yl) the position of the left side.

The values for the copter trajectory is saved relative to its starting point (x0, y0) =
(x(t = 0), y(t = 0)) as well as Ψ0 = Ψ(t = 0). The z position of the copter will be
kept at the same level as it is recorded in the motion capture system.

With all the calculations done, the output file can be written. This file is a list of
all values separated by a tab stop (’\t’) and each line representing another frame.
The saved file has the extension .pcr and contains all the necessary information for
the performance. The contents of each column can be seen in Appendix B.1.

3.2 Actuation Commands

With the desired puppet motion defined, the commands for the actuation system
can be found. In this section, it is shown how the recorded puppet position can be
transformed into the actuation position, i.e. the string length and two angles. As
mentioned in Section 2.4, the head is not yet actuated by the system. However,
the calculation for the actuation commands is analogously to that of the arm since
both actuation units have the same DOFs.

3.2.1 Legs

Since the legs are only actuated one dimensionally, the calculation of the corre-
sponding motor positions is very simple. Here, only the transformation for the left
leg will be shown. However, it is analogously for the right leg.

19 3.2. Actuation Commands

The actuation unit for the left leg is positioned at

rWOCleg,l
=

 tx,act,leg
ty,act,leg,l

zbody + Lshoulder − hact

 . (3.6)

The recorded data has the left leg positioned at

rWOLls
=

 xleg,l
yleg,l
zleg,l

 . (3.7)

With this, the length of the string can be calculated as

Lleg,l =
∥∥rWOCleg,l

− rWOLls

∥∥ . (3.8)

3.2.2 Arms

The calculation of the motor positions for the arms is more difficult than for the
legs since the arms are attached to a three dimensional actuation module. The
following approach is used:

1. Read in the input which is the desired position of the arm, or more specifically,
the desired position of the point where the string is attached (initial position,
see Figure 3.5(a)).

2. Determine the first rotational angle, γact,arm,l, by rotating the actuation bar
around the z axis until it is above the puppet’s arm (see Figure 3.5(b)).

3. Next, the second angle, αact,arm, will be calculated by rotating the actuation
bar downwards until the end of the actuation bar is directly above the puppet’s
arm, creating a straight line between these two points (see Figure 3.5(c)).

4. The length of the string can then be found as the distance between these two
points.

Step 1 The tracked point of the arm is given by

rWOAl,s
=

 xarm,l
yarm,l
zarm,l

 (3.9)

The base point of the actuation unit is located at

rWOCarm,l,2
=

 tx,act,arm,l
ty,act,arm,l

zbody + Lshoulder − hact,arm

 (3.10)

Step 2 The first angle can be found as

γact,arm,l = arctan

(
xarm,l − tx,act,arm,l
yarm,l − ty,act,arm,l

)
(3.11)

To prevent a collision of the actuation bar and the strings of the leg, this angle will
be limited to γact,arm,l ∈ [0, 1.4].

Chapter 3. Motion Planning 20

x
y

z

y

z

x

(a)

x
y

z

y

z

x

γact,arm,l

(b)

x
y

z

y

z

x

αact,arm,l

Larm,l

(c)

Figure 3.5: Calculation of the actuation commands for the left arm. The top row gives a view
from top, the bottom row shows the situation from the front. The red dot indicates the tracked
point on the arm where the string is attached. On the top is the actuation unit, on the bottom
lies the puppet’s arm. (a) Initial position. (b) The actuation bar is rotated around the z axis
until it is above the puppet arm. (c) The actuation bar is rotated downward, creating a straight
connection for the string between the limb and the end of the actuation bar.

Step 3 In the next step, the second angle has to be found. First, the distance
between the actuation base point and the tracked point on the puppet on a plane
parallel to the x− y plane is determined. This distance is given by

lact,arm,l,nearest =
√

(xarm,l − tx,act,arm,l)2 + (yarm,l − ty,act,arm,l)2 (3.12)

If lact,arm,l,nearets > lact,arm, then αact,arm,l will be simply set to 0. This is the case
when the arm is out of reach of the actuation system.

In the other case, the angle will be calculated as

αact,arm,l = arccos

(
lact,arm,l,nearest

lact,arm

)
(3.13)

Step 4 As a last point, the final DOF, the string length, must be calculated. With
the previously found rotational angles, the end point of the actuation bar is given
by

rWOCarm,l,3
=

 tx,act,arm,l + lact,arm · sin γact,arm,l · cosαact,arm,l
ty,act,arm,l + lact,arm · cos γact,arm,l · cosαact,arm,l
zbody + Lshoulder − hact,arm − lact,arm · sinαact,arm,l

 (3.14)

The length of the string can then be found as

Larm,l =
∥∥rWOCarm,l,3

− rWOAl,s

∥∥ (3.15)

21 3.3. User Interface

3.3 User Interface

To run a performance on the system, a sophisticated graphical user interface as can
be seen in Figure 3.6 was created. This interface also allows the user to view the
simulation.

Figure 3.6: The graphical user interface. On top, there is a toolbar which provides access to the
most important functions. Below that is the simulation on the left. On the right, there are options
to define the copter trajectory and further tune the performance. In the bottom, there is a time
line of the performance.

The user interface was created with the aid of Qt2. Qt is C++ framework which
allows for an easy creation of graphical user interfaces. There are various websites
and books like [2] which explain the usage of this library.

In order to start the program, a .pcr file containing the performance has to be
specified as a command line parameter. The specified file is the output of the
MATLAB program. First, the simulation will be calculated if this has not been
done before. Afterwards, the software is awaiting commands from the user.

There are four main areas. In the middle, there are two different parts. On the left,
there is the simulation. The user can play the simulation and rotate the camera
around to get a better view on the simulated puppet.

On the right, there is a functionality to edit the trajectory of the copter. This
trajectory is very basic and only allows the user to create paths consisting of several
straight lines. Due to the controller design (see [3] for details), it is not possible to
directly use the recorded data as trajectory. The recorded data would have to be

2Website: https://qt-project.org/ (June 2013)

https://qt-project.org/

Chapter 3. Motion Planning 22

filtered and smoothed first in order to prevent misbehaviour of the copter. To help
the user create a new path for the copter, the recorded data is shown as a reference.

Below the copter trajectory editor, there are two more buttons allowing to change
settings of the puppet. The first button gives the user the opportunity to select a
colour the puppet will light in. Behind the second button, there is a dialog which
lets the user change the name of the performance. This dialog also includes the
possibility to activate or deactivate certain limbs during the performance. If a limb
is deactivated, the output for the actuation stays at a constant value. However, this
functionality has not yet been thoroughly tested.

On the bottom of the window, there is a time line showing the whole performance.
Here, the user can select a point and directly modify this point. On top of the
window, there is a tool bar providing access to the most used features. These
functions include:

• It is possible to extend the performance by adding another file to it. This
extends the current performance. For the puppet movements, no special mea-
surements are done when combining two performance files together. For the
copter, the trajectory of the newly added data will be shifted such that the
trajectory begins at the place where it ended in the original configuration.

• There is a button to run the performance on the system. There is an option
to disable the copter which then only shows the puppet’s motions. If the
copter is enabled, a message will appear when the performance is started.
This gives to user time to correctly initialize the copter. It is also possible
to enable looping of the performance. Once activated, the performance will
automatically start over after it has finished.

• For debugging purposes, it is possible to edit the frequency with which the
performance data is sent. It is also possible to slow down the performance.

Chapter 4

Evaluation

In the following Chapter, the results of this Thesis are presented. The desired
recorded movements from the motion capture are compared with the simulation
results and the performance of the real puppet. The actual performance of the
puppet was again recorded in the OptiTrack motion capture environment. There
are a few general things that have to be noted first:

• The used coordinate frame has its origin in the middle of the shoulders (point
B0 in Figure 2.3). The coordinate axes point in the same direction as these
of the inertial frame (I frame in Figure 2.2): The x axis points to the front of
the puppet, the y axis goes to the left and the z axis goes upwards.

• The data from the puppet movement evaluation had to be shifted in time for
a better comparison. The reason for doing this is that the beginning of the
performance and the beginning of the recording do not coincide.

• The real system can do movements that are not possible in the simulation
and are not desired to appear in the real system. These include for example
a sideways motion (y direction) of the legs. These effects can easily appear
with the real system since the puppet is very light and therefore massively
influenced by all executed movements.

• There is a small offset of the shown positions. This is due to the fact that
in the motion capture setup the marker ball was recorded and not the actual
position of the string on the puppet limb. Additionally, the marker balls are
not totally in the same place during the evaluation and the input recording.

• Another reason for the offsets in the beginning is that the puppet is not placed
optimally in the beginning of the recording session.

With this information in mind, the evaluation of the results can be shown. First,
the data of the walking movement and then the data from the waving animation is
discussed.

23

Chapter 4. Evaluation 24

4.1 Walking

0 0.5 1 1.5 2 2.5 3 3.5
0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

Time [s]

S
tri

ng
 L

en
gt

h
[m

]

String Length

leg left
leg right

Figure 4.1: Calculated string lengths for the legs for the walking animation.

Figure 4.1 shows the calculated string lengths for the legs for the recorded walking
movement. It can be nicely observed that alternatively the string length of the
left and the right leg shrinks which results in an upwards movement of the leg.
The offset in the initial position result from slightly different placed legs during the
recording of this movement.

Figure 4.2 shows the position of the string on the left leg, Figure 4.3 gives the
position of the string on the right leg in plot form. As can be seen in the plots,
the simulation follows nicely the input data. The simulation data does not move
as far as the real system which could be solved by further tweaking the simulation.
However, the desired movement can be clearly seen in the simulation.

As for the real system, there was an overshoot on the left leg which can also be seen
in the plots of the right leg (two peaks at time t1 = 1.2 s and t2 = 2.9 s). This is
also the reason for the two peaks at these times in the plot of the x coordinate of
the right leg (Figure 4.3(a)). In the end, the walking movement of the puppet can
still be recognized.

Figure 4.4 shows images of the recorded input as well as the simulation and the
system behaviour.

25 4.1. Walking

0 0.5 1 1.5 2 2.5 3 3.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time [s]

P
os

iti
on

 [m
]

x Position Leg Left

Motion Capture
Simulation
System

(a)

0 0.5 1 1.5 2 2.5 3 3.5
−0.3

−0.28

−0.26

−0.24

−0.22

−0.2

−0.18

Time [s]

P
os

iti
on

 [m
]

z Position Leg Left

Motion Capture
Simulation
System

(b)

Figure 4.2: Comparison of the position of the string on the left leg between recorded data from
motion capture (blue), simulation (green) and the real system (red). (a) shows the x coordinate,
(b) shows the z coordinate.

Chapter 4. Evaluation 26

0 0.5 1 1.5 2 2.5 3 3.5
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Time [s]

P
os

iti
on

 [m
]

x Position Leg Right

Motion Capture
Simulation
System

(a)

0 0.5 1 1.5 2 2.5 3 3.5
−0.3

−0.29

−0.28

−0.27

−0.26

−0.25

−0.24

Time [s]

P
os

iti
on

 [m
]

z Position Leg Right

Motion Capture
Simulation
System

(b)

Figure 4.3: Comparison of the position of the string on the right leg between recorded data from
motion capture (blue), simulation (green) and the real system (red). (a) shows the x coordinate,
(b) shows the z coordinate.

27 4.1. Walking

(a) Motion capture (b) Simulation result (c) System behaviour

Figure 4.4: Comparison of the input with the system behaviour and the simulation of the walking
motion.

Chapter 4. Evaluation 28

4.2 Waving

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Time [s]

S
tri

ng
 L

en
gt

h
[m

]

String Length

arm left
arm right

Figure 4.5: Calculated string lengths for the legs for the waving animation.

In Figure 4.5, the calculated string length of the arms for the waving animation can
be seen. As expected, the string length of the right arm stays at a constant level
since the input is to only move one arm, the left one. For the left arm, it can be
seen how the string is moving up and down to perform the waving movement.

In Figure 4.6, the position of the string on the left arm can be seen. It can be seen
that the simulation as well as the actual system follow nicely the input curve for the
y and z coordinate. For the x coordinate, the motion capture input data and the
system performance differ only slightly while the data from the simulation performs
differently than the input. The main characteristics of the movement stay intact for
the simulation, however, since the motions in x direction do not define the waving
animation.

It can be also seen here that the simulation reacts a bit slow and with a small delay.
No statement can be made about the delay behaviour of the real system since it
difficult to determine the exact moment in time when the performance started.

The peak the system performs in the beginning is due to a different initialization.
The system always starts with αact,arm,l = 0◦ and γact,arm,l = 0◦ while the com-
mands directly start with a certain angle which is not necessarily zero.

Figure 4.7 show images of the system behaviour and the simulation in comparison
with the input from the motion capture recording.

29 4.2. Waving

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time [s]

P
os

iti
on

 [m
]

x Position Arm Left

Motion Capture
Simulation
System

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Time [s]

P
os

iti
on

 [m
]

y Position Arm Left

Motion Capture
Simulation
System

(b)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Time [s]

P
os

iti
on

 [m
]

z Position Arm Left

Motion Capture
Simulation
System

(c)

Figure 4.6: Comparison of the position of the string on the left leg between recorded data from
motion capture (blue), simulation (green) and the real system (red). (a) shows the x coordinate,
(b) the y coordinate, and (c) shows the z coordinate.

Chapter 4. Evaluation 30

(a) Motion capture (b) Simulation result (c) System behaviour

Figure 4.7: Comparison of the input with the system behaviour and the simulation of the waving
motion.

Chapter 5

Conclusion

5.1 Summary

The tool developed in this bachelor thesis allows to now generate performances that
can be played with the puppet. It is possible to record the desired movements by
simply playing with the puppet used in the focus project. The simulation is able to
show various movements which can be then by performed by the real system.

The user interface developed in this project is simple to use: It provides quick
access to the functions of viewing the simulation and running the performance on
the actual system. The good integration of the simulation in the user interface
also supports the selected tool. Furthermore, the calculated actuation command of
the software introduced in this report proofed to accurately reproduce the recorded
movements of various different motions like walking, waving or flying.

5.2 Future Work

As with every project, there is always room for improvement. As a first step, it is
suggested to incorporate some method to selectively enable or disable certain limbs
during the performance. Additionally, further processing of the input data from the
motion capture to filter out unwanted vibrations should be considered.

As another point, the actuation of the head can be implemented. For this, the
corresponding actuation commands need to be calculated similarly to these of the
arms and the simulation must be adapted to include the further string. Additionally,
the head must also be actuated by the system.

Finally, there are several possibilities to enhance the user interface. For now, there
is no direct open functionality in the software. Whenever another performance is
started, the software needs to be closed first, and then restarted. Furthermore,
the generation of a trajectory of the copter can be improved. For this, it is also
necessary to consider [3].

31

Chapter 5. Conclusion 32

Indices

33

Bibliography

[1] M. Ailinger, K. Egger, D. Freitag, R. Hofstetter, D. Keidel, P. Lustenberger,
F. Martinoni, and G. Wiedebach. Focus Project PuppetCopter. Technical re-
port, ETH Zurich, 2013.

[2] J. Blanchette and M. Summerfield. C++ GUI programming with Qt 4. Prentice
Hall, 2006.

[3] F. Martinoni. Trajectory Control for a Multirotor Platform. Bachelor Thesis,
ETH Zurich, 2013.

[4] M. Hutter and C. Gehring. proNEu Documentation. ETH Zurich, 2012.

[5] P. Lustenberger. Modular Actuators for Scalable Puppet Animation. Bachelor
Thesis, ETH Zurich, 2013.

34

List of Figures

1.1 Overview of the PuppetCopter . 2
1.2 The puppet . 3
1.3 Actuation system of the puppet . 3
1.4 Three dimensional actuation module 4

2.1 Gazebo Simulation Environment. 6
2.2 Mechanical model of the actuation platform. 9
2.3 Mechanical model of the puppet’s body and the head 10
2.4 Mechanical model of the left arm. 10
2.5 Mechanical model of the left leg. 11
2.6 The implemented simulation visualized with the help of OpenGL. . . 13

3.1 Overview of the process of creating a motion. 15
3.2 The puppet with reflective markers 16
3.3 The marionette control bar used for the motion capture. 17
3.4 Different coordinate frames from the motion capture 17
3.5 Calculation of the actuation commands for the left arm 20
3.6 The graphical user interface . 21

4.1 Calculated string lengths for the legs for the walking animation. . . . 24
4.2 Comparison of the position of the string on the left leg 25
4.3 Comparison of the position of the string on the right leg 26
4.4 Comparison of the input with the system behaviour and the simula-

tion of the walking motion. 27
4.5 Calculated string lengths for the legs for the waving animation. . . . 28
4.6 Comparison of the position of the string on the left leg 29
4.7 Comparison of the input with the system behaviour and the simula-

tion of the waving motion. 30

35

List of Tables

2.1 Overview of the considered tools to perform the simulation. 7
2.2 Joint limits . 14

B.1 The contents of each column of the output file generated by the
MATLAB script. 45

B.2 The contents of each column of the .pcs file generated as a result of
the simulation. 46

B.3 The contents of each column of the pcl log file generated during of
the simulation . 46

36

Appendix

37

List of Tables 38

Appendix A

Mechanical Properties of the
Puppet

A.1 Actuation System

Variable Matlab/C++ Value Description

hact,arm h_act_arm 0.05 m
z offset between the
actuation platform and
actuation bar

ccog,act,arm,y cog_actarm_x 0.1 m
COG of the actuation
bar

lact,arm l_actarm 0.2 m
length of the actuation
bar

tx,act,arm,l t_x_act_arm_l 0 m

distance between base
point of actuation unit
and coordinate origin

ty,act,arm,l t_y_act_arm_l 0.0855 m

tx,act,arm,r t_x_act_arm_r 0 m

ty,act,arm,r t_y_act_arm_r -0.0855 m

tx,act,leg,l t_x_act_leg_l 0.09 m

ty,act,leg,l t_y_act_leg_l 0.0825 m

tx,act,leg,r t_x_act_leg_r 0.09 m

ty,act,leg,r t_y_act_leg_r -0.0825 m

tx,act,leg,back t_x_act_leg_back -0.122 m

ty,act,leg,back t_y_act_leg_back 0 m

tx,act,head t_x_act_head 0 m

ty,act,head t_y_act_head 0 m

39

Appendix A. Mechanical Properties of the Puppet 40

A.2 Main Body

Variable Matlab/C++ Value Description

Lshoulder L_shoulder 0.7 m
distance between
shoulder and actuation
platform

ccog,body,x cog_body_x 0.0044175 m COG of the body ex-
pressed in the body’s co-
ordinate frame

ccog,body,y cog_body_y 0.00036212 m

ccog,body,z cog_body_z -0.092502 m

mbody m_body 0.15394 kg mass of the body

θxx,body Th_body_xx 891.92 kg mm2

inertias of the body ex-
pressed in the body’s co-
ordinate frame

θyy,body Th_body_yy 740.541 kg mm2

θzz,body Th_body_zz 426.385 kg mm2

θxy,body Th_body_xy 0.70102 kg mm2

θxz,body Th_body_xz −26.183 kg mm2

θyz,body Th_body_yz −4.3394 kg mm2

41 A.3. Upper Leg (Leg 1)

A.3 Upper Leg (Leg 1)

Variable Matlab/C++ Value Description

ty,center,leg t_y_center_leg 0.04 m distance between the ori-
gin of the body (mid
point of shoulder strings)
and the origin of the up-
per leg (rotation point)

tz,leg t_z_leg 0.205 m

ccog,leg,1,x cog_leg_1_x 0.00154555 m COG of the upper leg ex-
pressed in the upper leg’s
coordinate frame

ccog,leg,1,y cog_leg_1_y -0.0003402 m

ccog,leg,1,z cog_leg_1_z -0.022669 m

sleg,1,x s_leg_1_x 0.02 m front string location of
the upper leg expressed
in the upper leg’s coordi-
nate frame

sleg,1,y s_leg_1_y 0 m

sleg,1,z s_leg_1_z -0.095 m

sleg,back,x s_leg_back_x -0.02 m back string location of
the upper leg expressed
in the upper leg’s coordi-
nate frame

sleg,back,y s_leg_back_y 0 m

sleg,back,z s_leg_back_z -0.095 m

lleg,1 l_leg_1 0.11 m length of the limb

lleg,1,0T l_leg_1_0T -0.025 m
offset of the coordinate
origin and the upper
physical end of the leg

mleg,1 m_leg_1 0.01093 kg mass of the upper leg
θxx,leg,1 Th_leg_1_xx 15.9505 kg mm2

inertias of the upper leg
expressed in the upper
leg’s coordinate frame

θyy,leg,1 Th_leg_1_yy 15.5344 kg mm2

θzz,leg,1 Th_leg_1_zz 5.38076 kg mm2

θxy,leg,1 Th_leg_1_xy 0.00561 kg mm2

θxz,leg,1 Th_leg_1_xz −0.3683 kg mm2

θyz,leg,1 Th_leg_1_yz −0.042 kg mm2

Appendix A. Mechanical Properties of the Puppet 42

A.4 Lower Leg (Leg 2)

Variable Matlab/C++ Value Description

ccog,leg,2,x cog_leg_2_x 0.0213083 m COG of the lower leg ex-
pressed in the lower leg’s
coordinate frame

ccog,leg,2,y cog_leg_2_y 0.00376667 m

ccog,leg,2,z cog_leg_2_z -0.082258 m

lleg,2 l_leg_2 0.135 m length of the limb

mleg,1 m_leg_1 0.01141 kg mass of the lower leg

θxx,leg,1 Th_leg_1_xx 27.4609 kg mm2

inertias of the lower leg
expressed in the lower
leg’s coordinate frame

θyy,leg,1 Th_leg_1_yy 37.6423 kg mm2

θzz,leg,1 Th_leg_1_zz 13.8006 kg mm2

θxy,leg,1 Th_leg_1_xy 1.58943 kg mm2

θxz,leg,1 Th_leg_1_xz −9.5261 kg mm2

θyz,leg,1 Th_leg_1_yz −1.6611 kg mm2

A.5 Upper Arm (Arm 1)

Variable Matlab/C++ Value Description

ty,center,arm t_y_center_arm 0.073 m distance between the ori-
gin of the body (mid
point of shoulder strings)
and the origin of the up-
per arm (rotation point)

tz,arm t_z_arm 0.03 m

ccog,arm,1,x cog_arm_1_x 0.00000431 m COG of the upper arm
expressed in the upper
arm’s coordinate frame

ccog,arm,1,y cog_arm_1_y 0.0426084 m

ccog,arm,1,z cog_arm_1_z 0.0043149 m

larm,1 l_arm_1 0.085 m length of the limb

marm,1 m_arm_1 0.00473 kg mass of the upper arm

θxx,arm,1 Th_arm_1_xx 6.36965 kg mm2

inertias of the upper arm
expressed in the upper
arm’s coordinate frame

θyy,arm,1 Th_arm_1_yy 0.86444 kg mm2

θzz,arm,1 Th_arm_1_zz 6.37976 kg mm2

θxy,arm,1 Th_arm_1_xy 0.00079 kg mm2

θxz,arm,1 Th_arm_1_xz −0.0002 kg mm2

θyz,arm,1 Th_arm_1_yz 0.38382 kg mm2

43 A.6. Lower Arm (Arm 2)

A.6 Lower Arm (Arm 2)

Variable Matlab/C++ Value Description

ccog,arm,2,x cog_arm_2_x 0.00173277 m COG of the lower arm
expressed in the lower
arm’s coordinate frame

ccog,arm,2,y cog_arm_2_y 0.0564517 m

ccog,arm,2,z cog_arm_2_z -0.0048561 m

sarm,2,x s_arm_2_x 0.03 m string location of the
lower arm expressed in
the lower arm’s coordi-
nate frame

sarm,2,y s_arm_2_y 0.13 m

sarm,2,z s_arm_2_z 0 m

larm,2 l_arm_2 0.15 m length of the limb

marm,2 m_arm_2 0.01260 kg mass of the lower arm

θxx,arm,2 Th_arm_2_xx 23.7209 kg mm2

inertias of the lower arm
expressed in the lower
arm’s coordinate frame

θyy,arm,2 Th_arm_2_yy 5.19533 kg mm2

θzz,arm,2 Th_arm_2_zz 24.6714 kg mm2

θxy,arm,2 Th_arm_2_xy 2.04588 kg mm2

θxz,arm,2 Th_arm_2_xz 0.2063 kg mm2

θyz,arm,2 Th_arm_2_yz −5.8331 kg mm2

A.7 Head

Variable Matlab/C++ Value Description

tz,head t_z_head 0.055 m

z offset from the
shoulder and the base
point of the head
(rotation centre)

ccog,head,x cog_head_x 0.0020461 m COG of the head ex-
pressed in the head’s co-
ordinate frame

ccog,head,y cog_head_y 0.00382591 m

ccog,head,z cog_head_z 0.0518943 m

shead,x s_head_x 0.05 m string location of the
head expressed in the
head’s coordinate frame

shead,y s_head_y 0 m

shead,z s_head_z 0.08 m

mleg,1 m_leg_1 0.02708 kg mass of the head

θxx,leg,1 Th_leg_1_xx 120.224 kg mm2

inertias of the head ex-
pressed in the head’s co-
ordinate frame

θyy,leg,1 Th_leg_1_yy 108.419 kg mm2

θzz,leg,1 Th_leg_1_zz 117.478 kg mm2

θxy,leg,1 Th_leg_1_xy 18.4732 kg mm2

θxz,leg,1 Th_leg_1_xz −22.623 kg mm2

θyz,leg,1 Th_leg_1_yz −11.022 kg mm2

Appendix A. Mechanical Properties of the Puppet 44

Appendix B

Generated Files

This Section provides an overview of the contents of the various files generated
throughout the software created in this report. All this files have their values
separated by tab stop (’\t’).

B.1 Performance File

Table B.1 lists the content of the file generated from the MATLAB script. This file
has the extension .pcr.

Column Content Unit

0 Time s
1, 2, 3 x, y, z position of the copter recorded in the motion capture (for reference) m
4 yaw angle of the copter (ΨCopter) rad
5, 6, 7 x, y, z position of the copter, describe the actual trajectory m
8, 9, 10 x, y, z position of the puppet body m
11 yaw angle of the puppet (Ψ) rad
12, 13, 14 x, y, z position of the left leg m
15, 16, 17 x, y, z position of the right leg m
18, 19, 20 x, y, z position of the left arm m
21, 22, 23 x, y, z position of the right arm m
24, 25, 26 x, y, z position of the head m
27 flag determining if performance is a flying movement -
28 integer defining the colour the puppet should light in -

Table B.1: The contents of each column of the output file generated by the MATLAB script.

B.2 Simulation Results

The simulation creates two output files, both in the folder

/home/(USER)/.puppetcopter/

The simulation results are saved under (PERFORMANCENAME).pcs. The content of
this file is listed in Table B.2. Additionally, a log file is created during the simulation.
This file is saved as (PERFORMANCENAME).pcl and has the content as in Table B.3.

45

Appendix B. Generated Files 46

Column Content Unit

0 Time s

1-15 Values of generalized coordinates q rad

Table B.2: The contents of each column of the .pcs file generated as a result of the simulation.

Column Content Unit

0 Time s

1-15 Values of τ(1) to τ(15): friction and damping in joints kg/s2

16-18 Force of the string on the front of the left leg x/y/z N

19-21 Force of the string on the back of the left leg x/y/z N

22-24 Force of the string on the front of the right leg x/y/z N

25-27 Force of the string on the back of the right leg x/y/z N

28-30 Force of the string on the left arm x/y/z N

31-33 Force of the string on the right arm x/y/z N

34-36 Force of the string on head x/y/z N

37-39 Position of the string on the left leg m

40-42 Position of the string on the right leg m

43-45 Position of the string on the left arm m

46-48 Position of the string on the right arm m

49-52
Error of the string force controller left leg / right leg / left
arm / right arm

m

53-67 Joint velocities q̇ rad/s

68-82 Joint accelerations q̈ rad/s

Table B.3: The contents of each column of the pcl log file generated during of the simulation

	Abstract
	Symbols
	Introduction
	Motivation and Goals
	Focus Project PuppetCopter
	The Puppet
	Actuation of the Puppet

	Simulation
	Requirements and Assumptions
	Tool Evaluation
	Gazebo
	MATLAB and/or C++
	proNEu and C++
	Motion Simulation with Siemens NX
	SimMechanics
	Conclusion

	Mechanical Model of the Puppet
	Mechanical Properties
	Notation and Coordinate Frames

	Implementation

	Motion Planning
	Movement Generation
	Actuation Commands
	Legs
	Arms

	User Interface

	Evaluation
	Walking
	Waving

	Conclusion
	Summary
	Future Work

	Indices
	Bibliography
	List of Figures
	List of Tables

	Appendix
	Mechanical Properties of the Puppet
	Actuation System
	Main Body
	Upper Leg (Leg 1)
	Lower Leg (Leg 2)
	Upper Arm (Arm 1)
	Lower Arm (Arm 2)
	Head

	Generated Files
	Performance File
	Simulation Results

